Somatic localization of a specific large-conductance calcium-activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens.

نویسندگان

  • Gilles Martin
  • Sylvie Puig
  • Andrzej Pietrzykowski
  • Paula Zadek
  • Patrick Emery
  • Steven Treistman
چکیده

Alcohol is an addictive drug that targets a variety of ion channels and receptors. To address whether the effects of alcohol are compartment specific (soma vs dendrite), we examined the effects of ethanol (EtOH) on large-conductance calcium-activated potassium channels (BK) in cell bodies and dendrites of freshly isolated neurons from the rat nucleus accumbens (NAcc), a region known to be critical for the development of addiction. Compartment-specific drug action was indeed observed. Clinically relevant concentrations of EtOH increased somatic but not dendritic BK channel open probability. Electrophysiological single-channel recordings and pharmacological analysis of the BK channel in excised patches from each region indicated a number of differences, suggestive of a compartment-specific expression of the beta4 subunit of the BK channel, that might explain the differential alcohol sensitivity. These parameters included activation kinetics, calcium dependency, and toxin blockade. Reverse transcription-PCR showed that both BK channel beta1 and beta4 subunit mRNAs are found in the NAcc, although the signal for beta1 is significantly weaker. Immunohistochemistry revealed that beta1 subunits were found in both soma and dendrites, whereas beta4 appeared restricted to the soma. These findings suggest that the beta4 subunit may confer EtOH sensitivity to somatic BK channels, whereas the absence of beta4 in the dendrite results in insensitivity to the drug. Consistent with this idea, acute EtOH potentiated alphabeta4 BK currents in transfected human embryonic kidney cells, whereas it failed to alter alphabeta1 BK channel-mediated currents. Finally, an EtOH concentration (50 mm) that increased BK channel open probability strongly decreased the duration of somatic-generated action potential in NAcc neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Nucleus Accumbens SK Channel Activity Enhances Alcohol Seeking during Abstinence

The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but n...

متن کامل

Large conductance voltage- and Ca2+-gated potassium (BK) channel β4 subunit influences sensitivity and tolerance to alcohol by altering its response to kinases.

Tolerance is a well described component of alcohol abuse and addiction. The large conductance voltage- and Ca(2+)-gated potassium channel (BK) has been very useful for studying molecular tolerance. The influence of association with the β4 subunit can be observed at the level of individual channels, action potentials in brain slices, and finally, drinking behavior in the mouse. Previously, we sh...

متن کامل

Location matters: somatic and dendritic SK channels answer to distinct calcium signals.

Voltage-dependent calcium channels (VDCCs) couple neuronal activity to diverse intracellular signals with exquisite spatiotemporal specificity. Using calcium imaging and electrophysiology, Jones and Stuart (J Neurosci 33: 19396-19405, 2013) examined the intimate relationship between distinct types of VDCCs and small-conductance calcium-activated potassium (SK) channels that contribute to the co...

متن کامل

Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large co...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 29  شماره 

صفحات  -

تاریخ انتشار 2004